TD MAPLE CHIMIE N°2: CINETIQUE CHIMIQUE

La durée de l'épreuve est de 1 heure 15 minutes.

Le plan devra figurer. On respectera les notations imposées.

Nous nous plaçons dans le cas d'un système monophasé et isochore.

I. Etude de la réaction $A + B \rightarrow C$, du premier ordre par rapport à A et à B.

1. Position du problème.

Dans ce paragraphe, les notations sont celles utilisées en chimie.

Soit ξ_{ν} l'avancement volumique à l'instant t et k la constante de vitesse de réaction. Partant des concentrations $[A]_0 = a$; $[B]_0 = b$; $[C]_0 = 0$, on a le tableau suivant :

concentration	[A]	[B]	[C]
t = 0	a	b	0
t	a - ξ _v	b - ξ _v	ξ _v

La vitesse volumique est: $v = -\frac{d[A]}{dt} = k[A][B]$.

2. Etude à l'aide de Maple.

En Maple, notons ξ(t) (ksi) l'avancement volumique à l'instant t, et A, B, C les concentrations en ces espèces à cet instant t.

- Définir, à l'instant t, les concentrations de chaque espèce en fonction des concentrations initiales a, b, c et de l'avancement volumique.
- Ecrire l'équation différentielle vérifiée par les concentrations en A et B.
- Résoudre cette équation en $\xi(t)$, compte tenu de la condition initiale en ξ .
- Simplifier l'expression obtenue pour obtenir le résultat attendu (toutes le variables sont positives).
- Affecter la solution.

Temps de demi-réaction.

Calculer ce temps, noté τ (tau), dans le cas où A est le réactif limitant.

Dégénérescence de l'ordre.

Si on effectue la réaction précédente avec un très grand excès de B:a << b, on peut alors négliger la consommation de B par rapport à celle de A.

- Demander à Maple l'expression de la concentration en A.
- Pour a << b, faire un développement limité (de Taylor) de la concentration précédente, en a = 0, à l'ordre 2, et conclure.

II. Etude de deux réactions successives: $A \rightarrow B$ et $B \rightarrow C$.

1. Position du problème.

Reprenons dans ce paragraphe les notations utilisées en chimie.

Supposons la première réaction d'ordre 1 par rapport à A, de constante de vitesse k_1 , et la deuxième réaction d'ordre 1 par rapport à B, de constante de vitesse k_2 . Notons ξ_{v1} et ξ_{v2} les avancements volumiques respectifs.

Partant des concentrations $[A]_0 = a$; $[B]_0 = 0$; $[C]_0 = 0$, on a le tableau suivant :

concentration	[A]	[B)	[C]
t = 0	a	0	0
t	a - ξ _{v1}	ξ_{v1} - ξ_{v2}	ξ _{ν2}

On a donc successivement:

$$-\frac{d[A]}{dt} = k_1 [A]$$

$$\frac{d[B]}{dt} = k_1 [A] - k_2 [B]$$

$$\frac{d[C]}{dt} = k_2 [B]$$

 $\xi_{\mbox{\tiny \prime}1}$ et $\,\xi_{\mbox{\tiny \prime}2}\,$ sont définis par deux équations, nous travaillerons avec les deux premières.

2. Etude à l'aide de Maple.

Reprenons les notations Maple.

- Définir, à l'instant t, les concentrations de chaque espèce en fonction de la concentration initiale a et des avancements volumiques respectifs notés ξ1(t) et ξ2(t).
- Ecrire les deux équations différentielles vérifiées par les concentrations en A et B (on notera k1 et k2 les constantes respectives).
- Résoudre le système différentiel en $\xi 1(t)$ et $\xi 2(t)$, compte tenu des conditions initiales en $\xi 1$ et $\xi 2$.
- Affecter la solution.

Tracé des graphes.

Tracer sur le même graphe les concentrations de chaque espèce en fonction du temps (les différencier par des couleurs différentes), sur l'intervalle [0, 10 min], après avoir fixé : $a = 1 \text{ mol.L}^{-1}$; $k1 = 1 \text{ min}^{-1}$ et $k2 = 3 \text{ min}^{-1}$.

Cas d'un intermédiaire très réactif: approximation de l'état quasi-stationnaire ou principe de Bodenstein.

Dans le cas précédent, si B est très réactif, alors $k_1 << k_2$.

Refaire le tracé précédent pour $k1 = 0,1 \text{ min}^{-1} \ll k2$ et conclure.