TD MAPLE PHYSIQUE N°1: DEUX PROBLEMES DE CINEMATIQUE DU POINT

I. Le pendule simple.

1. Position du problème.

Soit un pendule simple constitué d'un fil inextensible et sans masse de longueur 1 auquel est suspendu une masse ponctuelle m. La position de la masse est repérée par l'angle θ que fait le fil avec la verticale.

A l'instant t=0, le pendule est lancé depuis sa position d'équilibre $\theta_0=0$ à la vitesse initiale $\dot{\theta}_0=v$ (en rad.s⁻¹).

On cherche à déterminer les variations de θ en fonction du temps t pour différentes valeurs de v.

2. Résolution à l'aide de Maple.

a) Equation différentielle.

Etablir l'équation différentielle vérifiée par θ (t) pour un fil de longueur 1 m . Ecrire cette équation en Maple en précisant la valeur de g (9,81 m.s⁻²).

b) Résolution de l'équation différentielle.

- Demander à Maple la résolution de l'équation précédente, compte tenu des conditions initiales ($\theta_0 = 0$ et $\dot{\theta}_0 = v$).
- Au vu de la réponse retournée par Maple, on choisit de résoudre numériquement l'équation (option numeric) pour avoir une solution approchée et de tracer la fonction θ (t) obtenue (odeplot) en faisant varier les vitesses initiales v entre 1 et 10 m.s^{-1} (instruction seq).

On pourra stocker les dessins obtenus dans une table (faire une boucle for dont le corps contiendra un dessin[i] :=odeplot...) puis utiliser la fonction display du module plots avec ou sans l'option insequence=true.

c) Interprétation physique.

On remarque l'existence d'une vitesse seuil qui fait passer d'une solution périodique (oscillations) à une solution où θ est strictement croissante (tour complet).

Donner, à l'aide des graphes obtenus, un encadrement de v_{seuil}.

Monter par le calcul que la valeur cherchée est $v_{seuil} = 2 \sqrt{g} = 6,28 \text{ m.s}^{-1}$ et conclure.

II. Le cheval et l'escargot.

1. La fable...

On attache la queue d'un cheval à un poteau au moyen d'un élastique indéfiniment extensible.

La longueur à vide de l'élastique est de 1 m.

On place un escargot sur l'élastique au niveau du poteau.

On fait partir le cheval qui s'éloigne du poteau à la vitesse de 1 m.s⁻¹.

L'escargot au même instant prend la même direction en se déplaçant à la vitesse de 1 mm.s⁻¹.

On cherche à répondre aux questions suivantes :

- L'escargot va-t-il rattraper le cheval?
- Si oui, au bout de combien de temps ?

2. Mise en équation.

On note v_e la vitesse de l'escargot par rapport au fil, et v_c la vitesse du cheval.

On prend pour origine de l'axe Ox l'extrémité fixe du fil. La longueur initiale du fil est L₀.

La position de l'escargot à la date t est E(t).

Montrer que l'équation différentielle vérifiée par E(t) s'écrit :

$$\frac{dE(t)}{dt} \! = \! \frac{v_{c}}{L_{0} + v_{c} \, t} E(t) + v_{e} \ . \label{eq:energy}$$

3. Résolution à l'aide de Maple.

- a) Poser l'équation et trouver la solution E(t) à l'aide de Maple (dsolve).
- b) Déterminer dans le cas général l'instant τ où l'escargot rattrape le cheval, soit $E(\tau) = L_0 + v_c \tau$.
- c) Commenter les cas particuliers :
- cheval immobile;
- vitesse du cheval infinie;
- déterminer avec les valeurs de l'énoncé l'instant τ où l'escargot rattrape le cheval puis reprendre le calcul si la vitesse de l'escargot est cette fois la moitié de celle du cheval. Commentez le résultat obtenu.
- d) Tracer τ en fonction de $\,v_{_{e}}\,$ pour les valeurs de $\,v_{_{c}}\,$ et de $\,L_{0}\,$ précédentes. Commenter.