SERIE D'EXERCICES N° 7 : ELECTROCINETIQUE : FILTRES PASSIFS EN REGIME SINUSOÏ DAL FORCE

Bande passante.

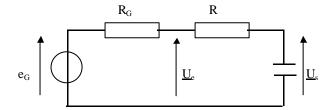
Exercice 1.

On considère la fonction de transfert du premier ordre fondamental, d'expression $\underline{H}(jx) = \frac{H_0}{1+jx}$ avec $x = f/f_0$.

- 1. Déterminer l'expression de la bande passante à -3 dB, notée B_{3dB} .
- 2. Déterminer l'expression de la bande passante à -n dB, notée B_{ndB}.

Exercice 2.

1. On considère le circuit $\,RC\,$ commandé par un générateur de f.e.m $\,e_G(t)\,$ et de résistance interne $\,R_G\,$ avec $\,C=1\,$ nF .



Déterminer l'expression de la fonction de transfert complexe $\underline{\underline{H}}(j\omega) = \frac{\underline{U}_s}{\underline{U}_e}$ en fonction de ω et $\tau = RC$.

Calculer la valeur de R pour obtenir une bande passante à -3 dB: $B_{3dB} = 100 \text{ kHz}$.

2. Déterminer l'expression $\underline{\underline{H}}'(j\omega) = \frac{\underline{U}_s}{\underline{E}_G}$ en fonction de ω et τ' constante de temps que l'on définira en fonction de R ,

 R_G et C.

En déduire l'expression de la nouvelle bande passante à -3dB: B' $_{3dB}$ en fonction de R , R_G et B_{3dB} . A.N.: $R_G = 9\,R$.

3. On branche en parallèle, aux bornes de $\,C$, une résistance d'utilisation $\,R_u = 10\,k\Omega$.

Déterminer l'expression $\underline{\underline{H}}''(j\omega) = \frac{\underline{U_s}}{\underline{E_G}}$ en fonction de ω , H_0 transfert statique et τ'' constante de temps. On définira H_0 et τ'' en

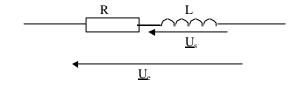
 $fonction \ de \ Ru \ , \ R \ , \ R_G \ et \ C \ . \ En \ d\'eduire \ l'expression \ de \ la \ nouvelle \ bande \ passante \ \grave{a} \ -3dB \ : \ B''_{3dB} \ en \ fonction \ de \ Ru \ , \ R \ , \ R_G \ et \ C \ .$

Calculer B", comparer à B'.

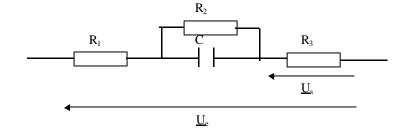
Filtres passifs du premier ordre.

Exercice3.

- 1. Prévoir le comportement asymptotique du filtre ci-dessous.
- 2. Calculer la fonction de transfert $\underline{\underline{H}}(jx) = \frac{\underline{U}_s}{\underline{U}_e}$ où x est la pulsation réduite que l'on exprimera en fonction des données.
- 3. Etablir le diagramme de Bode.



Exercice 4.



On considère le filtre ci-dessous avec : $R_1=R_3=1~k\Omega$; $R_2=18~k\Omega$; C=100~nF .

- 1. Prévoir le comportement asymptotique de ce filtre.
- 2. Calculer la fonction de transfert $\underline{H}(j\omega) = \frac{\underline{U}s}{Ue}$ et mettre cette fonction sous la forme : $\underline{H}(j\omega) = k \frac{1 + j\omega\tau_1}{1 + j\omega\tau_2}$

Calculer k, τ_1 et τ_2 .

3. Etablir le diagramme de Bode en précisant les gains en décibels $\ G$ pour les pulsations $\ 1/\tau_1$ et $\ 1/\tau_2$.

Filtres passifs du second ordre.

Exercice 5.

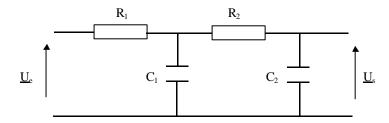
On considère le circuit de la figure.

- 1. Prévoir le comportement asymptotique de ce filtre.
- 2. Déterminer la fonction de transfert $\underline{\underline{H}}(j\omega) = \frac{\underline{U}_s}{\underline{U}_e}$ sous la forme $\frac{1}{1-\alpha\omega^2+j\beta\omega}$.
- 3. Montrer que l'on peut écrire $\underline{\underline{H}}(j\omega) = \frac{1}{(1+j\frac{\omega}{a})(1+j\frac{\omega}{b})}$ où a et b sont solutions d'une équation du second degré que l'on

explicitera.

On donne $R_1 = 100 \, k\Omega$; $C_1 = 10 \, nF$; $R_2 / R_1 = C_1 / C_2 = 5$. Déterminer les coefficients a et b (on introduira la constante de temps $\tau = R_1 \, C_1 = R_2 \, C_2$).

4. Etablir le diagramme de Bode en précisant les gains en décibels G pour les puls ations a et b.



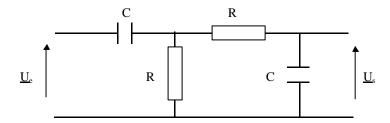
Exercice 6.

On considère le quadripôle ci-dessous.

- 1. Prévoir le comportement asymptotique de ce filtre.
- 2. Calculer la fonction de transfert $\underline{\underline{H}}(j\omega) = \frac{\underline{\underline{U}_s}}{\underline{\underline{U}_e}}$ en fonction de ω et ω_0 avec $R \ C \ \omega_0 = 1$.
- 3. Montrer que le dénominateur peut se mettre sous la forme d'un produit de fonctions du premier ordre : $(1+j\frac{\omega}{\omega_1})(1+j\frac{\omega}{\omega_2})$

 ω_1 et ω_2 s'exprimant en fonction de ω_0 .

4. Etablir le diagramme de Bode.



Exercice 7.

Tracer le diagramme asymptotique de la fonction de transfert :

$$\underline{\underline{H}}(j\omega) = \frac{(1+j\frac{\omega}{10\omega_0})(1+j\frac{\omega}{40\omega_0})}{(1+j\frac{\omega}{\omega_0})(1+j\frac{\omega}{100\omega_0})} \ .$$

-

Réponses (on donne ici les diagrammes asymptotiques de Bode).

Exercice 1.

1)
$$B = f_0 . 2$$
 $B = f_0 \sqrt{10^{n/10} - 1}$.

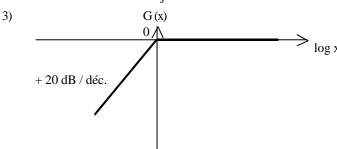
Exercice 2

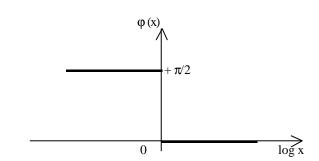
$$1) \ \underline{H} \ (j\omega) = \frac{1}{1+j\,\omega\,\tau} \ \text{où} \ \tau = R \ C \ ; \ R = 1 \ / \ (2\,\pi\,B\,C\,) = 1.6 \ k\Omega \ . \ 2) \ \underline{H}' \ (j\omega) = \frac{1}{1+j\,\omega\,\tau'} \ \text{où} \ \tau' = (R + R_G\,) \ C \ ; \ B' = \frac{1}{2\,\pi\,\tau'} = 10 \ kHz \ . \ 3) \ \underline{H}'' \ (j\omega) = \frac{1}{1+j\,\omega\,\tau'} \ \text{où} \ \tau' = (R + R_G\,) \ C \ ; \ B' = \frac{1}{2\,\pi\,\tau'} = 10 \ kHz \ . \ 3) \ \underline{H}''' \ (j\omega) = \frac{1}{1+j\,\omega\,\tau'} \ \text{où} \ \tau' = (R + R_G\,) \ C \ ; \ B' = \frac{1}{2\,\pi\,\tau'} = 10 \ kHz \ . \ 3) \ \underline{H}''' \ (j\omega) = \frac{1}{1+j\,\omega\,\tau'} \ \text{où} \ \tau' = (R + R_G\,) \ C \ ; \ B' = \frac{1}{2\,\pi\,\tau'} = 10 \ kHz \ . \ 3) \ \underline{H}''' \ (j\omega) = \frac{1}{1+j\,\omega\,\tau'} \ \text{où} \ \tau' = (R + R_G\,) \ C \ ; \ B' = \frac{1}{2\,\pi\,\tau'} = 10 \ kHz \ . \ 3) \ \underline{H}''' \ (j\omega) = \frac{1}{1+j\,\omega\,\tau'} \ \text{où} \ \tau' = (R + R_G\,) \ C \ ; \ B' = \frac{1}{2\,\pi\,\tau'} = 10 \ kHz \ . \ 3) \ \underline{H}''' \ (j\omega) = \frac{1}{1+j\,\omega\,\tau'} \ \text{où} \ \tau' = (R + R_G\,) \ C \ ; \ B' = \frac{1}{2\,\pi\,\tau'} = 10 \ kHz \ . \ 3) \ \underline{H}''' \ (j\omega) = \frac{1}{1+j\,\omega\,\tau'} \ \text{où} \ \tau' = (R + R_G\,) \ C \ ; \ B' = \frac{1}{2\,\pi\,\tau'} = 10 \ kHz \ . \ 3) \ \underline{H}''' \ (j\omega) = \frac{1}{1+j\,\omega\,\tau'} \ \text{où} \ \tau' = (R + R_G\,) \ C \ ; \ B' = \frac{1}{2\,\pi\,\tau'} = 10 \ kHz \ . \ 3) \ \underline{H}''' \ (j\omega) = \frac{1}{1+j\,\omega\,\tau'} \ \text{où} \ \tau' = (R + R_G\,) \ C \ ; \ B' = \frac{1}{2\,\pi\,\tau'} = 10 \ kHz \ . \ 3) \ \underline{H}''' \ (j\omega) = \frac{1}{1+j\,\omega\,\tau'} \ \text{où} \ \tau' = (R + R_G\,) \ C \ ; \ B' = \frac{1}{2\,\pi\,\tau'} = 10 \ kHz \ . \ 3) \ \underline{H}''' \ (j\omega) = \frac{1}{1+j\,\omega\,\tau'} \ \text{où} \ \tau' = (R + R_G\,) \ C \ ; \ B' = \frac{1}{2\,\pi\,\tau'} = 10 \ kHz \ . \ 3) \ \underline{H}''' \ (j\omega) = \frac{1}{1+j\,\omega\,\tau'} \ \ (j\omega) = \frac{1}{1$$

$$(j\omega) = \frac{H_0}{1+j\omega\tau''} \ \, \text{où} \ \, H_0 = \frac{R_u}{Ru+R+R_G} \ \, \text{et} \ \, \tau'' = \frac{R_u \, (R+R_G)}{Ru+R+R_G} \, C \; \; ; \; B'' = \frac{1}{2\,\pi\tau''} = 26 \, \text{kHz} \, . \label{eq:property}$$

Exercice 3.

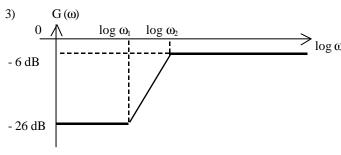
1) Passe-haut. 2)
$$\underline{H}(jx) = \frac{j x}{1+j x}$$
 où $x = \omega \tau = \omega \frac{L}{R}$.

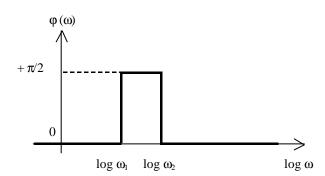




Exercice 4.

$$2) \ k = \frac{R_3}{R_1 + R_2 + R_3} \ ; \ \tau_1 = R_2 \, C \ ; \ \tau_2 = R_2 \, C \ \frac{R_1 + R_3}{R_1 + R_2 + R_3} \ .$$



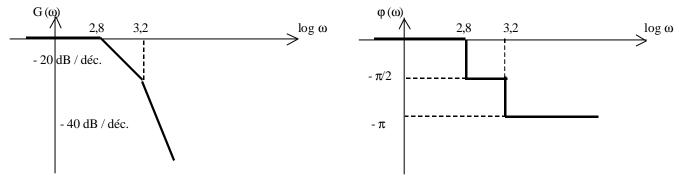


 $G(1/\tau_1) = -23 \text{ dB}$ et $G(1/\tau_2) = -9 \text{ dB}$.

Exercice 5.

1) Passe-bas. 2)
$$\alpha = R_1 R_2 C_1 C_2$$
 et $\beta = R_2 C_2 + R_1 (C_1 + C_2) . 3) $\alpha x^2 - \beta x + 1 = 0$; $a = 0.64 / \tau = 0.64.10^3 \text{ s}^{-1}$ et $b = 1.6 / \tau = 1.6.10^3 \text{ s}^{-1}$.$

4) $\log a = 2.8$; $\log b = 3.2$



G(a) = -3.6 dB et G(b) = -11.6 dB.

Exercice 6.

1) Passe-bande. 2)
$$\underline{\underline{H}}(j\omega) = \frac{j\frac{\omega}{\omega_0}}{1+3j\frac{\omega}{\omega_0}+(j\frac{\omega}{\omega_0})^2}$$
. 3) $\omega_1 = \frac{3-\sqrt{5}}{2}\omega_0$ et $\omega_2 = \frac{3+\sqrt{5}}{2}\omega_0$.

