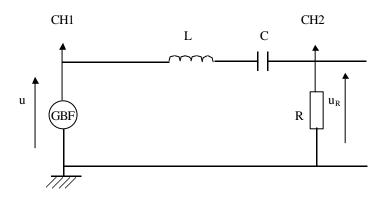
TP N° 7: DIPOLE (R,L,C) SERIE EN REGIME SINUSOIDAL FORCE

I. Objectifs.

On désire étudier le comportement, en fonction de la fréquence, d'un circuit (R,L,C) série soumis à une tension sinusoïdale d'amplitude maintenue constante.


Le choix des paramètres est pratiquement le même qu'en régime transitoire (voir TP n°6 III) : on fixe L = 100 mH; C = 10 nF et $R = 250 \Omega$, à contrôler à l'ohmmètre. Mesurer à l'ohmmètre la résistance r de la bobine.

II. Résonance de courant.

Pour cette partie on se reportera au cours V (Réseaux linéaires en régime sinusoïdal forcé), paragraphe VI (Exemple du circuit (R,L,C) série), sous paragraphe 5 (Résonance de courant).

1. Montage et principe des mesures.

Réaliser le montage suivant :

On visualise: | en voie 1: $u = U_m \cos \omega t$

en voie 2 : $Ri = RI_m \cos(\omega t + \phi_{i/u}) = U_{Rm} \cos(\omega t + \phi_{i/u})$ avec $\phi_{i/u}$ déphasage de i par rapport à u .

On étudie l'amplitude U_{Rm} et le déphasage $\phi_{l/u}$ en fonction de la fréquence $f = \omega/2\pi$ en maintenant $U_m = 3,0 \text{ V} = \text{cte}$ (il est nécessaire de régler en permanence l'amplitude délivrée par le G.B.F. : en effet l'impédance du circuit aux bornes du G.B .F. varie avec la fréquence et l'amplitude délivrée chute lorsque cette impédance diminue, notamment à la résonance, on le montrera en classe par le calcul).

u

i

Les amplitudes U_{Rm} et U_m , ainsi que le déphasage $\phi_{l/u}$, sont lus à l'oscilloscope. Voir ci-dessous pour la lecture du déphasage.

Mesure pratique d'un déphasage par lecture d'un oscillogramme.

Supposons $\phi_{i/u}>0$: i est en avance sur u et le décalage temporel $\alpha_{i/u}(s)>0$. $\alpha_{i/u}$

 $Or \ i = I\sqrt{2} \ cos \ (\omega t + \ \phi_{i/u} \) = I\sqrt{2} \ cos \ \omega (\ t + \alpha_{i/u} \) \ avec \ \phi_{i/u} = \omega \ \alpha_{i/u} = \frac{2\pi}{T} \ \alpha_{i/u}$

d'où, sans noter les indices : $\frac{T/2}{\pi} = \frac{\alpha}{\phi}$ ou en degrés : $\frac{T/2}{180} = \frac{\alpha}{\phi(^\circ)}$.

Si l'on décalibre la base de temps pour fixer $T/2 \leftrightarrow 9$ div , soit T/2 = 9 a où a est la sensibilité de la base de temps en s.div⁻¹ (inutile de la connaître), alors, α est représenté par x div avec $\alpha = x$ a et : $\frac{9 \text{ a}}{180} = \frac{x \text{ a}}{\phi(^{\circ})} \Rightarrow \phi(^{\circ}) = 20 \text{ x}$.

2. Résultats attendus.

D'après le cours précité, en variables adimensionnées $x = \frac{\omega}{\omega_0} \text{ et } Q = \frac{L\omega_0}{R+r} = \frac{1}{(R+r)C\omega_0} : \underline{I}_m = \frac{\underline{U}_m}{(R+r)[1+jQ(x-\frac{1}{v})]} .$

En déduire les expressions de U_{Rm} et $\tan \phi_{l/u}$ en termes de fréquences, en introduisant $f_0 = \omega_0 / 2\pi$ (garder Q).

Rappeler rapidement les valeurs attendues pour U_{Rm} et $\phi_{l/u}$ pour $f \to 0$; $f = f_0$; $f \to \infty$; et pour les fréquences définissant la bande passante à 3 dB: f_1 et f_2 .

3. Mesures.

On désire tracer en correspondance (comme dans le document du cours) les courbes U_{Rm} et $\phi_{\ell u}$ en fonction de f . Commencer par déterminer les échelles des graphes de façon à pouvoir tracer ceux-ci directement, sans faire de tableau (pour mieux visualiser les variations de U_{Rm} et de $\phi_{\ell u}$ et multiplier les mesures lorsque celles-ci deviennent notables):

- -en abscisses : $f \in [100 \text{ Hz}; 9 \text{ kHz}]$;
- -en ordonnées, se servir des valeurs attendues que l'on calculera numériquement (remarquer que le choix pour $\varphi_{i/u}$ d'une échelle de 1 cm pour 20° est avantageux compte tenu de la relation $\left|\varphi_{i/u}(^{\circ})\right| = 20 \, x$);
- -la feuille de papier millimétré sera prise verticalement.

Procéder aux mesures.

Note: pour les fréquences faibles (en dessous du kHz environ), l'amplitude de l'intensité est très faible, il en est de même de l'amplitude de la tension aux bornes de la résistance R: on fonctionne en très petits signaux (ronflement et bruit, voir le cours VII) et la lecture de l'oscillogramme est difficile.

4. Résultats.

Déterminer expérimentalement la fréquence de résonance et l'amplitude aux bornes de la résistance pour cette fréquence, puis la bande passante et le facteur de qualité.

Comparer les valeurs obtenues à celles attendues (précision), de même pour l'étude du déphasage de l'intensité par rapport au courant.

II. Résonance de tension aux bornes du condensateur.

Pour cette partie on se reportera au cours V (Réseaux linéaires en régime sinusoïdal forcé), paragraphe VI (Exemple du circuit (R,L,C) série), sous paragraphe 6 (Résonance de tension aux bornes du condensateur).

Mener cette partie de façon analogue à l'étude précédente (les notations sont les notations usuelles):

- 1. Proposer un montage pour étudier l'amplitude $\,U_{Cm}\,$ et le déphasage $\,\phi_{uc/u}\,$, le réaliser.
- 2. On rappelle : $\frac{U_{Cm}}{1-x^2+j\frac{x}{Q}}$, en déduire les expressions de U_{Cm} et $\tan\phi_{uc/u}$ en termes de fréquences (garder Q).

 $Rappeler\ rapidement\ les\ valeurs\ attendues\ pour\ \ U_{Cm}\ \ et\ \ \phi_{uc/u}\ \ pour\ \ f \rightarrow 0\ ;\ \ f = f_{r\acute{e}s} = f_0 \sqrt{1 - \frac{1}{2Q^2}} \ \ ;\ \ f = f_0\ ;\ \ f \rightarrow \infty \ \ (on\ rappelle$

l'expression du facteur de surtension : $\frac{Q}{\sqrt{1 - \frac{1}{4Q^2}}} \;).$

- 3. Déterminer les échelles pour tracer en correspondance (comme dans le document du cours) les courbes U_{Cm} et $\phi_{uc/u}$ en fonction de f . Procéder aux mesures.
- 4. Comparer les résultats expérimentaux àceux attendus à la résonance.